

Kinetic Equations

Text of the Exercises

– 25.03.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Consider a family of probability measures $F \subseteq \mathcal{P}(\mathbb{R}^d)$. We say that *the family is tight* if for any $\varepsilon > 0$ there exists a compact set $K \subset \mathbb{R}^d$ such that $\mu(K) > 1 - \varepsilon$ for any $\mu \in F$.

The following Theorem holds true (for a proof, see Theorem 5.1 in *Convergence of Probability Measures (Second Edition)* by P. Billingsley).

Theorem (Prohorov's Theorem). *Consider a sequence of probability measures $\{\mu_k\}_{k \in \mathbb{N}} \subseteq \mathcal{P}(\mathbb{R}^d)$ which is tight. Then there exists a subsequence¹ $\{\mu_{k_l}\}_{l \in \mathbb{N}}$ and a probability measure $\mu \in \mathcal{P}(\mathbb{R}^d)$ such that $\mu_{k_l} \rightharpoonup \mu$ if $l \rightarrow +\infty$.*

Use Prohorov's Theorem (without proving it) to prove that $(\mathcal{P}_1(\mathbb{R}^d), \mathcal{W}_1)$ is a complete metric space.

Hint: Consider a Cauchy sequence for \mathcal{W}_1 , show that it is tight. Using the Theorem deduce the existence of a weak limit and prove that the convergence holds also with the metric \mathcal{W}_1 .

Exercise 2

Prove the second part of Dobrushin's Theorem, i.e., let $M = \{\mu_t \mid t \in [0, T]\} \in \mathfrak{M}_T^+(\mu_0)$ a solution to

$$\begin{cases} \partial_t \mu_t(\psi) = \mu_t(v \cdot \nabla_x \psi + E_{\mu_t} \cdot \nabla_v \psi), & t \in [0, T], \psi \in C_c^\infty(\mathbb{R}^3 \times \mathbb{R}^3), \\ \mu_t(\psi)|_{t=0} = \mu_0(\psi), & \psi \in C_c^\infty(\mathbb{R}^3 \times \mathbb{R}^3), \end{cases} \quad (1)$$

with

$$E_\mu(x) = \int_{\mathbb{R}^3 \times \mathbb{R}^3} \nabla U(x - x') d\mu(x', v'), \quad U \in C_b^2(\mathbb{R}^3), \quad (2)$$

and with μ_0 absolutely continuous with respect to \mathcal{L}^6 , i.e. $d\mu_0(x, v) = f_0(x, v) dx dv$. Prove that if $f_0 \in C^1(\mathbb{R}^3 \times \mathbb{R}^3)$ then also μ_t is absolutely continuous with respect to \mathcal{L}^6 and moreover $d\mu_t(x, v) = f(t, x, v) dx dv$ with $f \in C^1([0, T] \times \mathbb{R}^3 \times \mathbb{R}^3)$.

Hint: It can be convenient to use the fact that, once the solution exists, the Vlasov equation can be seen as a Liouville equation with a potential depending on the existing solution.

¹Recall that $\{\mu_{k_l}\}_{l \in \mathbb{N}}$ is a subsequence of $\{\mu_k\}_{k \in \mathbb{N}}$ if the sequence $\{k_l\}_{l \in \mathbb{N}}$ is a sequence of natural numbers such that $k_{l+1} > k_l$ for any $l \in \mathbb{N}$.

Exercise 3

Let $f_0 \in L^1 \cap L^\infty(\mathbb{R}^3 \times \mathbb{R}^3)$; consider the following initial value problem:

$$\begin{cases} \partial_t f + v \cdot \nabla_x f = 0, & \text{in } \mathcal{D}'([0, +\infty) \times \mathbb{R}^3 \times \mathbb{R}^3), \\ f|_{t=0} = f_0, & \text{in } \mathcal{D}'(\mathbb{R}^3 \times \mathbb{R}^3), \end{cases} \quad (3)$$

where we also assume as usual that the map $t \mapsto \langle f(t, \cdot, \cdot), \varphi \rangle$ is continuous in t for any $\varphi \in C_c^\infty(\mathbb{R}^3 \times \mathbb{R}^3)$.

(i) Prove that there exists a unique solution to (3) and show its explicit form.

(ii) Use the explicit form to prove that

$$\|f(t, \cdot, \cdot)\|_{L^p(\mathbb{R}^3 \times \mathbb{R}^3)} = \|f_0\|_{L^p(\mathbb{R}^3 \times \mathbb{R}^3)}, \quad \forall t \in [0, +\infty), \quad p \in [1, +\infty]. \quad (4)$$

(iii) Use the explicit form to prove the following dispersion relation:

$$\|f(t, \cdot, \cdot)\|_{L_x^\infty(\mathbb{R}^3; L_v^1(\mathbb{R}^3))} \leq \frac{1}{|t|^3} \|f_0\|_{L_x^1(\mathbb{R}^3; L_v^\infty(\mathbb{R}^3))}, \quad \forall t \in (0, +\infty). \quad (5)$$